If You want to farm green, two decisions about how you grow your crops are likely to have the biggest impact on achieving your goal — how much tillage you use, and how well you manage nitrogen.

Although there probably are hundreds — or thousands — of other decisions, practices and technologies that can contribute to a green farming regime, these two factors alone can come close to eliminating your cropping system's global warming footprint. At the same time, you'll also reduce your operation's impact on soil and water erosion, as well as surface and groundwater degradation from fertilizers and other ag inputs. You also may be able to turn this environmental stewardship into extra cash by selling carbon credits associated with no-till. (See “Cash from carbon,” page 36, for details.)

This surprising finding — that intensive crop production practices in use today can be nearly carbon neutral — is emerging from research on both greenhouse gas production and greenhouse gas sequestration associated with production of annual crops.

The research shows that basic crop management decisions to reduce tillage and use nitrogen more efficiently can cut a farming operation's impact on global warming gases by 90% or more. In a best-case scenario, which would include no-till, these everyday practices come close to zeroing out a farming operation's greenhouse gas footprint.

How's that for farming green?

The greenhouse impact

The possibility of having only a minimal impact on greenhouse gases might seem unlikely in an industry that relies heavily on carbon-emitting diesel fuel, as well as pesticides and fertilizers, which generate carbon dioxide as they are manufactured.

But the soil's ability to sequester large amounts of carbon when it isn't tilled, along with the ability of most soils to impound small amounts of methane, goes a long way toward offsetting carbon dioxide emissions associated with burning fuel and manufacturing fertilizers and pesticides.

“Some people are surprised by this, but our research shows that no-till can almost completely mitigate all other sources of greenhouse warming in field crop systems,” says Philip Robertson, an environmental scientist at Michigan State University who has conducted extensive research on the impact of farming practices on global warming gases. Other reduced tillage systems, such as strip-till, store less carbon than no-till, but they still offer significant potential for mitigating greenhouse gases.

The second biggest opportunity for reducing greenhouse gases in crop farming is to boost nitrogen use efficiency, according to the research. This reduces off-gassing of the important greenhouse gas nitrous oxide.

Greenhouse gas basics

Although the list of greenhouse gases is long, Robertson's research focuses on the big three: carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4). In terms of volume and total impact, these are the most important and pervasive greenhouse gases and the most prevalent in agricultural crop production.

Robertson and other scientists calculate the impact of these greenhouse gases in universal CO2 units, which they call Global Warming Potential (GWP). This helps them assess various mitigation strategies, since some greenhouse gases are, in effect, more powerful than others.

For example, a molecule of nitrous oxide emitted to the atmosphere has an impact that is 300 times greater than that of a molecule of CO2. This greater impact is due primarily to the facts that nitrous oxide has a greater ability to capture heat and it has a longer expected lifetime in the atmosphere (about 140 years as opposed to about 10 years for CO2).

No-till vs. conventional vs. organic

Robertson's research compared the net GWP of corn-soybean-wheat rotations grown under conventional tillage, no-till, a low-input system with a legume cover and an organic system with a legume cover. He also examined the GWP of alfalfa and poplar trees, as well as the GWP of land in various stages of succession from grassland to forest.

To conduct the research, Robertson analyzed air samples taken multiple times each year from each plot over a period of 10 years. (For a description of this and other greenhouse gas research, visit www.kbs.msu.edu/faculty/robertson. Look for “Greenhouse Gases in Intensive Agriculture.”)

The research showed that no-till had the lowest net GWP of all annual cropping systems. It released about 125 lbs./acre of CO2 equivalent into the atmosphere, whereas conventional tillage released the most — about 1,000 lbs./acre. Notably, no-till sequestered about 1,000 lbs./acre of GWP, which nearly offset the balance of GWP produced by fertilizer, lime, fuel and nitrous oxide released from the soil. No-till also sequestered about 45 lbs. of methane equivalent, as did the other cropping systems.

The organic system, which was in second place, produced a net GWP of about 365 lbs./acre. That's about three times the carbon footprint of the no-till system. But its footprint is far less than that of a conventional tillage system. That's primarily because no nitrogen fertilizer, pesticides and lime were applied and because a small amount of carbon was sequestered in the soil, versus none for conventional tillage. The low-input legume system produced slightly higher GWP, about 560 lbs./acre.

In comparison to the annual cropping systems, alfalfa sequestered, or removed, about 180 lbs./acre of GWP, and poplar sequestered about 1,000 lbs./acre. Plots just beginning the succession from grassland to forest removed the most GWP, about 1,900 lbs./acre. A late successional forest sequestered only about 35 lbs./acre.