AirSep pneumatic impurities separator Grimme Landmaschinenfabrik GmbH & Co. KG, Damme, Germany Hall 25, Stand F11

In potato harvesting the systems used for separating tuber-like impurities such as stones and clods of earth are predominantly mechanical. However, these are limited in performance efficiency, and especially with multiple-row harvesting machinery frequently represent a bottleneck. By combining a perforated conveyor base and an uplift airstream flowing through from below, a pneumatic separator device in which the direction of crop flow and hence the machine-specific potato throughput are retained without restrictions has been realized in harvesting machinery for the first time. During the passage through the separation area the tubers are virtually kept gently floating above the vibrating conveyor base, while the heavier stones and clods of earth drop down and are passed via a segmented lock to a removal belt. The quality and performance of separation can be infinitely adjusted from the tractor to the composition of the material being harvested by altering the combination of air flow rate and the inclination and frequency of the conveyor base. In addition to a high output per unit area coupled with reductions in manual post-sorting work, sites can be secured for potato cropping that would otherwise only be used following cost-intensive earth separation in spring.

AXMAT: Automatic spreading pattern adjustment of a twin disc fertilizer spreader RAUCH Landmaschinenfabrik GmbH, Sinzheim, Germany Hall 15, Stand D30

and MSO Messtechnik und Ortung GmbH, Bad Münstereifel, Germany

Hall 17, Stand A26

With AXMAT, Rauch presents the world's first solution featuring automatic online measuring of fertilizer distribution and automatic adjustment of a disc fertilizer spreader to the fertilizer type in the tank and the desired working width. For the first time high fertilizer distribution precision is achieved automatically with the aid of microwave sensors and an automatic adjustment system on the fertilizer spreader. An arm swivelling about the distributor disc of a disc fertilizer spreader provided with microwaves records the spread fan position beneath the fertilizer spread fan, without contact, and sets the spread pattern automatically to the desired working width with the aid of the rotatable tank bottom and dosing aperture. During the spreading process, the spreading pattern is monitored permanently and the discharge point of the fertilizer to the distributor disc is readjusted automatically as required. The novel, automatic self-setting of the fertilizer spreader to the required working width makes it possible to achieve higher precision than is otherwise encountered in conventional adjustment practice and achieves this without the need for any spreading test on the field. The permanent self-monitoring of the spread fan also allows automatic online readjustment of the setting system to the set working width in response to changing fertilizer batches or changes in weather conditions. It improves fertilizer efficiency, reduces emissions and fertilizer costs, and increases the yield security. Initial test results of the French test institute IRESTEA confirm the said advantages of the system.

Merlo Hybrid telehandler – Turbofarmer 40.7 Hybrid Merlo S.p.A, Cervasca, Italy Hall 6, Stand C15

For the first time a plug-in hybrid electric vehicle will be offered for agricultural use with the option of switching the drive between electrical and diesel-electrical. In the electric mode the 30 kWh lithium battery supplies the machine with energy – it works quietly and emission-free and can thus also be used in closed buildings. In the hybrid mode the diesel engine operating at constant speed supplies the power for traction drive and charges the battery at the same time. This drive architecture makes it possible to halve the rated output of the diesel engine without restricting the effective work of the loader. In addition, during the low-load or idling phases that frequently occur in telehandler use, the drive can in turn be powered purely electrically, as a result of which the fuel costs and CO2 emissions in conjunction with the downsized engine can be reduced by up to 30%. A further reduction in costs results from charging the plug-in hybrids from the electricity grid or the PV system.

Online Simulator for operating harvesting machinery and tractors CLAAS Vertriebsgesellschaft mbH, Harsewinkel, Germany Hall 13, Stand B05

The CLAAS Online Simulator for operating harvesting machinery and tractors allows the complete working behaviour of a machine under a wide variety of conditions to be mapped dynamically on a PC interface for the first time. Machinery operators can thus be trained in operating a complex harvesting machine or tractor independently and outside operating times, online and interactively at the PC. With the aid of evaluated telemetric and process data, virtual control devices and operating elements, the software largely represents real operating conditions and procedures of a machine. This allows optimal training for the complex operation of harvesting machinery to be carried out already prior to harvesting work. Such training makes it possible to substantially boost the technical potential of the harvesting machinery already during the first days of use for harvesting. Operating faults and damage to machinery can be reduced in this way. New drivers can be familiarized quickly with the machine. Experienced drivers can refresh their knowledge through regular training and continuously improve their performance potential. Considerable savings in cost and time can be achieved already from day one by better handling of expensive harvesting machinery.